Maths for Nurses: Unit conversions

This booklet will provide an overview of the unit conversions for nursing students.

If you have any problems in answering the questions within the booklet please contact skills@library.leeds.ac.uk for personal help using the maths support drop-in sessions. Also check out these e-videos and quizzes:

- University of Leeds Maths for nurses

Unit Conversion

In your chosen field you are likely to need to convert weights/volumes from one unit to another.

a) Metric Measurements of Weight

Name	Abbreviation	Notes
Kilogram	kg	Approx. the weight of a litre of water
Gram	g	One thousand grams to a kilogram
Milligram	mg	One thousand mg to the gram
Microgram	mcg	One million mcg to the gram
Nanogram	ng	One thousand ng to the mcg

Conversion Chart

To move up one by 1000 . If we want to move up two stages we divide by 1000 twice (i.e. divide by $1000000=1$ million)

Example

Convert 3 kilograms into grams.
As we can see from the table, there are 1000 grams in a kilogram.
We have 3 kilograms, so $3 \times 1000=3000$
$3 \mathrm{~kg}=3000 \mathrm{~g}$.

From the conversion chart, the arrow from kilograms to grams carries the instruction ' $\times 1000$ '. So 3 $\times 1000=3000$. We have 3000 g .

Note There is a greater chance of serious error when using abbreviations of measures.
For example mg , ng , and mcg may be hard to distinguish if written by hand. To avoid this, it is best to write out the whole name of the measure.

b) Metric Measurements of Liquids

Name	Abbreviation	Notes
Litre	l	Abbreviation is a lower-case L
Millilitre	ml	One thousand millilitres to a litre

Conversion Chart

There is also the Centilitre (cl), so named as there are a hundred of them in a litre.
A single Centilitre is equivalent to 10 ml . Centilitres are normally used to measure wine.

Examples

1. Convert 575 millilitres into litres.

From the diagram, we see that to convert from millilitres to litres, we divide the number of millilitres by 1000 .
So we have $575 \div 1000=0.575$ litres
2. Convert 2.67 litres into millilitres.

To convert from litres to millilitres we multiply the number of litres by 1000.
So we have $2.67 \times 1000=2670$ millilitres

Estimation

Always look at the answers you produce to check they are sensible. A good way to do this is to estimate the answer.
In Example 1 above we can use our knowledge of litres and millilitres to estimate the result. We have 575 millilitres. If we had 1000 millilitres we would have a litre. Half a litre would be 500 millilitres, so our result will be a little over half a litre.

Exercise 1

1. Copy and complete the following, using the tables and diagrams
a) 1 kilogram = \qquad grams
b) 1 gram $=$ \qquad milligrams
c) 1 gram = \qquad micrograms
d) 1 microgram = \qquad nanograms
e) 1 litre = \qquad millilitres
2. Convert the following into milligrams
a) 6 grams
b) 26.8 grams
c) 3.924 grams
d) 405 grams
3. Convert the following into grams
a) 1200 mg
b) 650 mg
c) 6749 mg
d) 3554 mg
4. Convert the following into milligrams
a) 120 micrograms
b) 1001 micrograms
c) 2675 micrograms
d) 12034 mcg
5. Convert the following: (you may find it easier to work out the answers in two stages):
a) 1.67 grams into micrograms
b) 0.85 grams into micrograms
c) 125 micrograms into grams
d) 6784 micrograms into grams
e) 48.9 milligrams into nanograms
f) 3084 nanograms into milligrams
6. Convert the following into litres
a) 10 millilitres
b) 132 millilitres
c) 2389 millilitres
d) 123.4 millilitres
7. Convert the following into millilitres
a) 4 litres
b) 6.2 litres
c) 0.94 litres
d) 12.27 litres
8. A patient needs a dose of 0.5 g of medicine A . They have already had 360 mg .
a) How many more mg do they need?
b) What is this value in grams?
c) A dose of 1400 mcg has been prepared. Will this be enough?

Drug Calculations

Drug calculations vary depending on whether you are dealing with liquid or solid medications, or if the dose is to be given over a period of time. In this section I will go over each of these situations in turn.

It is very important that you know how drug dosages are worked out, because it is good practise to always check calculations before giving medication, no matter who worked out the original amount. It is far better to point out a mistake on paper than overdose a patient.

a) Tablets

Working out dosage from tablets is simple.

Formula for dosage:

Total dosage required $=$ Number of tablets required Dosage per tablet

Note-If your answer involves small fractions of tablets, it would be more sensible to try to find tablets of a different strength rather than try to make $\frac{2}{3}$ of a tablet for example.

Examples

1. A patient needs 500 mg of X per day. X comes in 125 mg tablets. How many tablets per day does he need to take?

Total dosage required is 500 mg ,
Dosage per tablet is 125 mg
So our calculation is $\frac{500}{125}=4$
He needs 4 tablets a day

b) Liquid Medicines

Liquid medicines are a little trickier to deal with as they will contain a certain dose within a certain amount of liquid, such as 250 mg in 50 ml , for example.
To work out the dosage, we use the formula:
$\frac{\text { What you want }}{\text { What you've got }} \times$ What it's in
Note: In order to use this formula, the units of measurement must be the same for 'What you want' and 'What you've got'; i.e. both mg or both mcg etc.

Examples

2. We need a dose of 500 mg of Y . Y is available in a solution of 250 mg per 50 ml .

In this case,
What we want $=500$
What we've got $=250$
What it's in $=50$
So our calculation is $\frac{500}{250} \times 50=100$
We need 100 ml of solution.
3. We need a dose of 250 mg of Z. Z is available in a solution of 400 mg per 200 ml .

In this case,
What we want $=250$
What we've got $=400$
What it's in $=200$
So our calculation is $\frac{250}{400} \times 200=125$
We need 125 ml of solution.

c) Medicine over Time

1) Tablets/liquids

This differs from the normal calculations in that we have to split our answer for the total dosage into 2 or more smaller doses.

Look at Example 1 again. If the patient needed the 500 mg dose to last the day, and tablets were taken four times a day, then our total of 4 tablets would have to be split over 4 doses.

Total amount of liquid/tablets for day = Amount to be given per dose Number of doses per day

We would perform the calculation: $4 \div 4=1$
So he would need 1 tablet 4 times a day.

2) Drugs delivered via infusion

For calculations involving infusion, we need the following information:

- The total dosage required
- The period of time over which medication is to be given
- How much medication there is in the solution

Example

4. A patient is receiving 500 mg of medicine X over a 20 hour period.
X is delivered in a solution of 10 mg per 50 ml .
What rate should the infusion be set to?

Here our total dosage required is 500 mg

Period of time is 20 hours
There are 10 mg of X per 50 ml of solution

Firstly we need to know the total volume of solution that the patient is to receive.
Using the formula for liquid dosage we have:
$\frac{500}{10} \times 50=2500$ So the patient needs to receive 2500 mls .
We now divide the amount to be given by the time to be taken: $\frac{2500}{20}=125$
The patient needs 2500 ml to be given at a rate of 125 ml per hour

Note: Working out medicines over time can appear daunting, but all you do is work out how much medicine is needed in total, and then divide it by the amount of hours/doses needed

d) Drugs labelled as a percentage

Some drugs may be labelled in different ways to those used earlier.

V/V and W/V

Some drugs may have V/V or W/V on the label.
V / V means that the percentage on the bottle corresponds to volume of drug per volume of solution i.e $15 \% \mathrm{~V} / \mathrm{V}$ means for every 100 ml of solution, 15 ml is the drug.

W/V means that the percentage on the bottle corresponds to the weight of drug per volume of solution. Normally this is of the form 'number of grams per number of millilitres'. So in this case 15% W/V means that for every 100 ml of solution there are 15 grams of the drug.

If we are converting between solution strengths, such as diluting a 20% solution to make it a 10% solution, we do not need to know whether the solution is V/V or W/V.

Examples

5. We need to make up 1 litre of a 5% solution of A. We have stock solution of 10%.

How much of the stock solution do we need? How much water do we need?

We can adapt the formula for liquid medicines here:

What we want \times What we want it to be in What we've got

We want a 5% solution. This is the same as $\frac{5}{100}$ or $\frac{1}{20}$.
We've got a 10% solution. This is the same as $\frac{10}{100}$ or $\frac{1}{10}$.
We want our finished solution to have a volume of 1000 ml .
Our formula becomes:

$$
\begin{aligned}
\frac{\frac{1}{20}}{\frac{1}{10}} \times 1000 & =\frac{1}{20} \times \frac{10}{1} \times 1000 \text { (using the rule for dividing fractions) } \\
& =\frac{1}{2} \times 1000=500 . \text { We need } 500 \mathrm{mls} \text { of the A solution. }
\end{aligned}
$$

Which means we need $1000-500=500 \mathrm{mls}$ of water.
(Alternatively you can use the fact that a 5% solution is half the strength of a 10% solution to see that you need 500 ml of solution and 500 ml of water)
6. You have a $20 \% \mathrm{~V} / \mathrm{V}$ solution of drug F . The patient requires 30 ml of the drug. How much of the solution is required?
$20 \% \mathrm{~V} / \mathrm{V}$ means that for every 100 ml of solution we have 20 ml of drug F .
Using our formula:
What you want \times What it's in
What you've got
This becomes $\frac{30}{20} \times 100=150$
We need 150 mls of solution.
7. Drug G comes in a W/V solution of 5%. The patient requires 15 grams of G . How many mls of solution are needed?
5% W/V means that for every 100 mls of solution, there are 5 grams of G .
Using the formula gives us
$\frac{15}{5} \times 100=300$
300 mls of solution are required.

Note In very rare cases, a drug may be labelled with a ratio. If this is the case, refer to the Drug Information Sheet for the specific medication in order to be completely sure how the solution is made up.

Suggested Reading

Drug Calculations for Nurses-A Step By Step Approach
Robert Lapham and Heather Agar
ISBN 0-340-60479-4
Nursing Calculations Fifth Edition
J.D. Gatford and R.E.Anderson

ISBN 0-443-05966-7

Acknowledgement: The original document was designed and produced by Hull University Study advice Service.

Exercise 2

1. How many 30 mg tablets of drug B are required to produce a dosage of:
a) 60 mg
b) 120 mg
c) 15 mg
d) 75 mg
2. Medicine A is available in a solution of 10 mg per 50 ml . How many mls are needed to produce a dose of:
a) 30 mg
b) 5 mg
c) 200 mg
d) 85 mg
3. Medicine C is available in a solution of 15 micrograms per 100 ml . How many mls are needed to produce a dose of:
a) 150 mcg
b) 45 mcg
c) 30 mcg
d) 75 mcg
4. Medicine D comes in 20 mg tablets. How many tablets are required in each dose for the following situations:
a) total dosage 120 mg , 3 doses
b) total dosage 60 mg , 2 doses
c) total dosage $100 \mathrm{mg}, 5$ doses
d) total dosage 30 mg , 3 doses
5. At what rate per hour should the following infusions be set?
a) Total dosage 300 mg , solution of 25 mg per 100 mls , over 12 hours
b) Total dosage 750 mg , solution of 10 mg per 30 mls , over 20 hours
c) Total dosage 450 mg , solution of 90 mg per 100 mls , over 10 hours
6. Drug B comes in a $20 \% \mathrm{~V} / \mathrm{V}$ stock solution.
i) How much of the solution is needed to provide:
a) 50 ml of B
b) 10 ml of B
c) 200 ml of B
ii) How would you make up the following solutions from the stock solution?
a) Strength 20% volume 1 litre
b) Strength 10% volume 750 ml
iii) What strength are the following solutions?
a) Volume 1 litre, made up of 600 ml stock solution, 400 ml water
b) Volume 600 ml , made up of 300 ml stock solution, 300 ml water
7. Drug C comes in a 15% W/V stock solution.
i) How much of the solution is needed to provide:
a) 30 g of C
b) 22.5 gof C
c) 90 g of C
ii) How would you make up the following solutions from the stock solution?
a) Strength 5% volume 900 ml
b) Strength 10% volume 750 ml
iii) How many grams of C are in the following solutions?
a) Volume 1 litre, made up of 400 ml stock solution, 600 ml water
b) Volume 800 ml , made up of 450 ml stock solution, 350 ml water

Answers to exercises

Exercise 1

1 a) $1 \mathrm{~kg}=1000 \mathrm{~g}$
b) $1 \mathrm{~g}=1000 \mathrm{mg}$
c) $1 \mathrm{~g}=1000000 \mathrm{mcg}$
d) $\mathrm{mcg}=1000 \mathrm{ng}$
e) 1 litre $=1000 \mathrm{ml}$

2
a) $6 \mathrm{~g}=6000 \mathrm{mg}$
b) $268 \mathrm{~g}=26800 \mathrm{mg}$
c) $3.924 \mathrm{~g}=3924 \mathrm{mg}$
d) $405 \mathrm{~g}=405000 \mathrm{~m} 4 \mathrm{~g}$
3 a) $1200 \mathrm{mg}=1.2 \mathrm{~g}$
b) $650 \mathrm{mg}=0.65 \mathrm{~g}$
c) $6749 \mathrm{mg}=6.749 \mathrm{~g}$
d) $3554 \mathrm{mg}=3.554 \mathrm{~g}$

4 a) $120 \mathrm{mcg}=0.12 \mathrm{mg}$
b) $1001 \mathrm{mcg}=1.001 \mathrm{mg} \quad \mathrm{c}) 2675 \mathrm{mcg}=2.675 \mathrm{mg}$
d) $12034 \mathrm{mcg}=12.034 \mathrm{mg}$

5
a) $1.67 \mathrm{~g}=1670000 \mathrm{mcg}$
b) $0.85 \mathrm{~g}=850000 \mathrm{mcg}$
c) $125 \mathrm{mcg}=0.000125 \mathrm{~g}$
d) $6784 \mathrm{mcg}=0.006784 \mathrm{~g}$
e) $48.9 \mathrm{mg}=48900000 \mathrm{ng}$
f) $3084 \mathrm{ng}=0.003084 \mathrm{mg}$
6 a) $10 \mathrm{ml}=0.01$ litres
b) $132 \mathrm{ml}=0.132$ litres
c) $2389 \mathrm{ml}=2.3891$ itres
d) $123.4 \mathrm{ml}=0.1234$ litres

7 a) 4 litres $=4000 \mathrm{ml}$
b) 6.2 litres $=6200 \mathrm{ml}$
c) 0.94 litres $=940 \mathrm{ml}$
d) 12.27 litres $=12270 \mathrm{ml}$

8 a) 140 milligrams
b) 0.14 grams
c) no, the correct dose would be 140000 mcg

Exercise 2

1.

a) 2 tablets
b) 4 tablets
c) $\frac{1}{2}$ tablet
d) $2 \frac{1}{2}$ tablets
2.
a) 150 ml
b) 25 ml
c) 1000 ml
d) 425 ml
3.
a) 1000 ml
b) 300 ml
c) 200 ml
d) 500 ml
4.
a) 2 tablets
b) $1 \frac{1}{2}$ tablets
c) 1 tablet
d) $\frac{1}{2}$ tablet
5.
a) 100 ml per hour
b) 112.5 ml per hour
c) 50 ml per hour
6. i)a) 250 ml
b) 50 ml
c) 1 litre
ii) a) 1 litre stock, no water
b) 375 ml stock, 375 ml water
iii) a) 600 ml stock contains 120 ml B
b) 300 ml stock contains 60 ml B

So 120 ml in $1000 \mathrm{ml}=\frac{120}{1000}=12 \%$ So 60 ml in $600 \mathrm{ml}=\frac{60}{600}=10 \%$
7. i) a) 200 ml
b) 150 ml
c) 600 ml
ii) a) 300 ml stock, 600 ml water
b) 500 ml stock, 250 ml water
iii) a) 60 g
b) 67.5 g

