Factoring Cubic Polynomials

Sum of Two Cubes

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Difference of Two Cubes

$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

Distance and Midpoint Formulas

Distance, d, between two endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Midpoint of the line segment with Endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Quadratic Functions

The quadratic function, $f(x)=a x^{2}+b x+c$ has vertex $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$

The quadratic function, $f(x)=a(x-h)^{2}+k$ has vertex (h, k)

The Remainder Theorem

If the polynomial $f(x)$ is divided by $x-c$, then the remainder is $f(c)$.

The Factor Theorem

Let $f(x)$ be a polynomial. If $f(c)=0$ then $x-c$ is a factor of $f(x)$.
If $x-c$ is a factor of $f(x)$ then $f(c)=0$.

Finding the Horizontal Asymptotes
Consider the rational function,

$$
f(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots .+b_{2} x^{2}+b_{1} x+b_{0}}, \quad a_{n} \neq 0, \quad b_{m} \neq 0
$$

1. If $n<m$, the line $y=0$ is the horizontal asymptote of the graph of f.
2. If $n=m$, the line $y=\frac{a_{n}}{b_{m}}$ is the horizontal asymptote of the graph of f.
3. If $n>m$, the graph of f has no horizontal asymptote.

Finding Oblique (Slant) Asymptotes

Let $N(x)$ and $D(x)$ be polynomials and consider the rational function $f(x)=\frac{N(x)}{Q(x)}$.
If the degree of $N(x)$ is one more than the degree of $D(x)$, then graph of $f(x)$ has an oblique (slant) asymptote. To find the equation for the oblique (slant) asymptote first perform long division to obtain

$$
f(x)=\frac{N(x)}{D(x)}=m x+b+\frac{\text { remainder }}{D(x)}
$$

The oblique (slant) asymptote has equation $y=m x+b$.

Compound Interest

After t years, the balance, A, in an account with principal P and annual interest rate, r, is given by

1. $A(t)=P\left(1+\frac{r}{n}\right)^{n t}$, for n compounding periods per year.
2. $A(t)=P e^{r t}$, for continuously compounding interest.

Change-of-Base Formula for Logarithms

For any positive real numbers M, b, and n, where $n \neq 1$, and $b \neq 1$,
$\log _{b} M=\frac{\log _{n} M}{\log _{n} b}$

Trigonometric Identities

Pythagorean Identities
$\tan ^{2}(t)+1=\sec ^{2}(t) \quad 1+\cot ^{2}(t)=\csc ^{2}(t)$

Sum and Difference formulas for Sine

$\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$
$\sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)$
Sum and Difference formulas for Cosine
$\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)$
$\cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)$

Sum and Difference formulas for Tangent

$\tan (\alpha+\beta)=\frac{\tan (\alpha)+\tan (\beta)}{1-\tan (\alpha) \tan (\beta)}$
$\tan (\alpha-\beta)=\frac{\tan (\alpha)-\tan (\beta)}{1+\tan (\alpha) \tan (\beta)}$

Double Angle Formulas

$\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$
$\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=2 \cos ^{2}(\theta)-1=1-2 \sin ^{2}(\theta)$
$\tan (2 \theta)=\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}$

Power-Reducing Formulas

$\sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2}$
$\cos ^{2}(\theta)=\frac{1+\cos (2 \theta)}{2}$
$\tan ^{2}(\theta)=\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}$

Half-Angle Formulas

$$
\begin{aligned}
& \sin \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1-\cos (\theta)}{2}} \\
& \cos \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1+\cos (\theta)}{2}} \\
& \tan \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1-\cos (\theta)}{1+\cos (\theta)}}=\frac{1-\cos (\theta)}{\sin (\theta)}=\frac{\sin (\theta)}{1+\cos (\theta)}
\end{aligned}
$$

Product to Sum Formulas

$$
\begin{aligned}
& \cos (\alpha) \cos (\beta)=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)] \\
& \sin (\alpha) \sin (\beta)=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] \\
& \sin (\alpha) \cos (\beta)=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\
& \cos (\alpha) \sin (\beta)=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]
\end{aligned}
$$

Sum to Product Formulas

$\cos (\alpha)+\cos (\beta)=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
$\cos (\alpha)-\cos (\beta)=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
$\sin (\alpha)+\sin (\beta)=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
$\sin (\alpha)-\sin (\beta)=2 \sin \left(\frac{\alpha-\beta}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right)$

The Unit Circle

Page 5 of 5

