Quadratic Functions

The quadratic function, $f(x)=a x^{2}+b x+c$ has vertex $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$

The quadratic function, $f(x)=a(x-h)^{2}+k$ has vertex (h, k)

The Remainder Theorem

If the polynomial $f(x)$ is divided by $x-c$, then the remainder is $f(c)$.

The Factor Theorem

Let $f(x)$ be a polynomial. If $f(c)=0$ then $x-c$ is a factor of $f(x)$.
If $x-c$ is a factor of $f(x)$ then $f(c)=0$.

Asymptotes of Rational Functions

Finding the Horizontal Asymptotes

Consider the rational function,

$$
f(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots .+b_{2} x^{2}+b_{1} x+b_{0}}, \quad a_{n} \neq 0, \quad b_{m} \neq 0
$$

1. If $n<m$, the line $y=0$ is the horizontal asymptote of the graph of f.
2. If $n=m$, the line $y=\frac{a_{n}}{b_{m}}$ is the horizontal asymptote of the graph of f.
3. If $n>m$, the graph of f has no horizontal asymptote.

Finding Oblique (Slant) Asymptotes

Let $N(x)$ and $D(x)$ be polynomials and consider the rational function $f(x)=\frac{N(x)}{Q(x)}$.
If the degree of $N(x)$ is one more than the degree of $D(x)$, then graph of $f(x)$ has an oblique (slant) asymptote. To find the equation for the oblique (slant) asymptote first perform long division to obtain

$$
f(x)=\frac{N(x)}{D(x)}=m x+b+\frac{\text { remainder }}{D(x)}
$$

The oblique (slant) asymptote has equation $y=m x+b$.

