Introduction

Stress
• Stress is a negative reaction that is caused by a dangerous stimuli, an event outside of the person’s control, or an environment that affects the well-being of the person (Sato & Wilson, 2014).
• A stress response is how a person reacts psychologically and physiologically when they encounter a problem or difficult environment (Liu, Liu, Oei, Wang, Zhou & Zhao, 2013).

Social Media
• An increase in stress is related to the increase in the dependency for social interaction through social media. Many people who report having excessive internet use have anxiety, depression, high levels of stress and etc. (Osborne, Reed, Romano, Truzoli, & Vile, 2015).
• Those exposed to stressful events and have a poor ability to cope are more likely to not resist bad habits like over eating, excessive drinking, smoking, problematic internet use (PIU), and etc. (Li, Wang & Wang, 2009).

Causes of Stress
• College students who have been through a death of a member of their family, their parents getting a divorce, and falling out of relationships; all of which can cause stress (Aksoz, Deatherage, & Servaty-Seib, 2014).
• Previous research has used the mirror tracing activity as a stressor (Nagano, Sawada, & Tanaka, 2002).

Hypothesis
• An increase in stress is related to the increase in the dependency for social interaction through social media.

Methods

Participants
• N=10 students from Eastern Connecticut State University
 • 40% Male (n=4), 60% female (n=6)
 • 10% Freshman (n=1), 40% Sophomore (n=4), 20% Junior (n=2), 30% Senior (n=3)
• 90% Caucasian (n=9), 10% Hispanic/Latino (a) (n=1)
• Mean age:19.75 (SD=1.4386)

Materials
• Psycho-Social Aspects of Facebook use Questionnaire (Bodroža & Jovanović, 2016). Bodroža & Jovanović, 2016 confirm that PSAFU is a valid test.
 • 5 pt. Likert type scale.
 • Higher levels indicate stronger dependency for social interaction through social media.
• Mirror Tracing Task
 • Computer set up
 • All students take same Mirror Tracing Activity.
 • All complete all difficulty levels under the same time restrictions
• Galvanic Skin Response
 • BioPac MP150 machine measured GSR on the palm of the hand

Procedure
• Students took the Psycho-Social Aspects of Facebook use Questionnaire (modified).
• Each student was brought to quiet room
• Once in the room and comfortable the student was hooked up to the Galvanic Skin Response (GSR).
• Students then took a mirror tracing test on the computer
• Student had a set amount of time to complete each level of difficulty for the mirror tracing activity.

Results
• IBM SSPS 22
• Mean values: social networking score
 • $M=117.7$ ($SD=17.72663$), change in GSR1
 • $M=128$ ($SD=0.6887$), change in HR1 $M=2.572$ ($SD=3.85707$), change in GSR2 $M=12$ ($SD=153.84$), change in HR2 $M=1.294$ ($SD=3.71557$)
• A Spearman’s rho correlation coefficient was calculated
• A weak correlation between social networking and change in GSR1 that was not significant was found $p=.405$, $(r_8= -.297, p>.05)$; social networking is not related to change in GSR1.
• A weak correlation between social networking and change in GSR2 that was not significant was found $p=.675$, $(r_8= -.152, p>.05)$; social networking is not related to change in GSR2.
• A weak correlation between social networking and change in HR1 that was not significant was found $p=.467$, $(r_8= -.261, p>.05)$; social networking is not related to change in HR1.
• A moderate correlation between social networking and change in HR2 that was not significant was found $p=.347$, $(r_8= .333, p>.05)$; social networking is not related to change in HR1.

Discussion

Summary
• No relationship was found between the dependency for social interaction through social networking, GSR, and heart rate.
• No difference found between participants with high dependency on social interaction through social networking and participants with low dependency on social interaction through social networking when it comes to stress level.

Limitations
• The sample size was very small
• The sample group was not very diverse

Future Directions
• Use a larger sample size
• Split all the experiment up rather than doing everything at once; give the participants a break in between each experiment.

References